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Our aim was to confirm and identify the presence of tart cherry anthocyanins in several target tissues of
healthy rats. Liquid chromatography-mass spectrometry analysis was employed for detection and
characterisation of anthocyanin metabolites. It was shown that four native anthocyanins, namely
cyanidin 3-glucosylrutinoside, cyanidin 3-rutinoside, cyanidin 3-rutinoside 5-p-p-glucoside, and peoni-
din 3-rutinoside were differentially distributed among targeted tissues of rats. Bladder and kidney con-
tained more total anthocyanins than all other tissues analysed. It was also revealed that the
bioavailability pattern of these native anthocyanins among tissues is varied. The highest concentration
Tart cherry A . .. . . . N
Anthocyanins gf individual anthocyanin cy‘ar.ndm B-glucgsylrutmomde (2}39 plcograms/gram of t1§sue) was detected
Rats in bladder, followed by cyanidin 3-rutinoside 5-B-p-glucoside (916 picograms/gram) in the liver of rats.
Although the diverse distribution of tart cherry anthocyanins in different rat tissues still requires further
explanation, it may provide an evidentiary link between tissue bioavailability and health-enhancing
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properties of anthocyanins at target sites.
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1. Introduction

Interest in the biological effects of anthocyanin compounds has
substantially increased in recent years due to evidence of thera-
peutic effects in animal models (He & Giusti, 2010; Tsuda, 2012)
and in humans with anthocyanin-rich foods. Anthocyanins have
antioxidant activity and exert anti-inflammatory effects
(Heinonen, 2007; Tsuda, 2012). Although the role of anthocyanins
in functional foods is less well established as compared to other
flavonoids, recent studies reveal their intracellular and molecular
effects (Tsuda, 2012; and references cited therein). For example,
anthocyanins can alter the activity of peroxisome proliferator-
activated receptors (PPARs) that affect energy substrate
metabolism and inflammation (Seymour et al., 2008; Seymour
et al., 2011). These effects suggest a possible benefit for the
phenotypes of metabolic syndrome (Tsuda, 2008) and its patho-
logic sequelae. In general, studies suggest that anthocyanins are
associated with health benefits against chronic disease including
cardiovascular disease (Mink et al., 2007) and cancer (McCune,
Kubota, Stendell-Hollis, & Thomson, 2010).
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Tart cherry (Prunus cerasus) fruits and their relevant processed
food products are rich sources of dietary anthocyanins, as reported
earlier (Kirakosyan, Seymour, Urcuyo Llanes, Kaufman, & Bolling,
2009; Ou, Bosak, Brickner, lezzoni, & Seymour, 2012). We previ-
ously reported that tart cherry phytochemicals have in vitro syner-
gistic effects on antioxidant capacity (Kirakosyan et al., 2010). In
various rat models, we reported that tart cherry fruit intake
reduces blood lipids and inflammation and alters phenotypes of
metabolic syndrome (Seymour et al., 2008; Seymour et al., 2009).
Tart cherry also affects activity of PPARs in various tissues and var-
ious gene transcripts related to inflammation (Matchynski et al.,
2013; Seymour et al., 2009; Zhou, Nair, & Claycombe, 2012). Phy-
tochemicals in tart cherry fruits may be directly cytoprotective
by altering gene transcription and translation, thereby improving
resistance to oxidative and inflammatory stressors.

The health-enhancing properties of anthocyanins cannot be
fully understood without analysis of their tissue distribution. This
information affects hypotheses of the molecular mechanisms of
bioactive compounds at target sites and how they vary among
tissues. We previously showed in humans that intake of
individually quick frozen (IQF) whole tart cherries yielded plasma
and urine anthocyanins and their related metabolites (Uhley et al.,
2009). Because anthocyanins have perceived low tissue
bioavailability, limited studies have measured tissue levels
following intake of anthocyanin-rich foods (Felgines et al., 2009;
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Passamonti, Vrhovsek, Mattivi, & Vanzo, 2005; Talavéra et al.,
2005). Furthermore, tissue bioavailability of tart cherry anthocya-
nins is unknown. This knowledge gap should be filled to bridge
what is known of the phenotypic and transcriptional effects of tart
cherry-enriched diets in diverse experimental models.

In the present study, our working hypothesis is that intake of
tart cherry is associated with anthocyanin appearance in several
tissues of healthy rats (heart, kidney, liver, brain, bladder, and
adipose tissue), and that sugar conjugates of native anthocyanins
and/or their metabolites are differentially distributed among
tissues.

2. Materials and methods
2.1. Animals and diets

Wistar rats (Male, N =18, six weeks old) were acquired from
Harlan Corp. (Indianapolis, IN, USA) and were housed two animals
per cage in temperature-controlled rooms (22 °C) with a 12h
light:12 h dark photoperiod regime. Animals were fed each day
(~4 pm) a semi-purified control diet AIN-76A (Dyets, Inc.) for
seven days, for washout from their previous standard “chow” diet
and to acclimate to powder-based feeding. For the experimental
diets, AIN-76a was altered by adding 1% or 10% w:w IQF tart cherry
powder (harvested in northern Michigan and prepared by
VanDrunen Farms, Momence, IL). Tart cherry powder nutrient
analysis was conducted by VanDrunen Farms and its subsidiary
Futureceuticals (Momence, IL). Further phytochemical analysis
was conducted by our group using liquid chromatography-mass
spectrometry (LC/MS). Diets were mixed weekly, vacuum-sealed,
and stored at 4 °C. This approach guarantees anthocyanin stability,
as shown in our previous studies. Nine rats were assigned to 1%
tart cherry diet (1-TC) and nine to 10% tart cherry diet (10-TC). Rats
were provided 20 g of diet powder per animal per day; this was
approximately 10% below ad libitum intake to ensure complete
consumption and equal food intake among all rats in the study.
Water was provided ad libitum. This protocol was approved by
the University of Michigan’s University Committee on the Use
and Care of Animals.

2.2. Tissue collection and extraction

After three weeks of feeding, rats were fasted for >18 h and
sacrificed by 4% isoflurane inhalation followed by decapitation
and exsanguinations (with a rat’s body weight of 295+ 10 g).
Tissues were harvested and weighed, including heart (ventricles),
brain (cortex), liver, kidneys, bladder, and retroperitoneal fat.
Tissues were minced, washed with PBS, and snap-frozen in liquid
nitrogen, and stored at —80 °C until further analysis. The time from
tissue harvest to freezing was less than 5 min.

2.3. Sample preparation

Both brain and bladder samples were merged from all animals
in a group during extraction to have enough tissue for extraction.
All other tissues were sampled from individual animals. Frozen
tissues were crushed using a tissue homogenizer (Polytron
Brinkmann) in methanol containing 5% formic acid (6 ml/g of
tissue), and centrifuged 10,000xg for 10 min. Supernatants were
collected, and pellets were re-extracted with 5% formic acid in
methanol (4 ml/g of tissue). The two methanolic supernatants
were combined, and evaporated to dryness using a Labconco rotary
evaporator at room temperature under reduced pressure.

To determine anthocyanin recovery following extraction,
cyanidin 3-glucoside was used as an internal standard. Dried tissue

extracts were dissolved in 500 pl of 5% formic acid aqueous solu-
tion. After centrifugation (10,000xg, 10 min), an aliquot (100 pl)
was immediately analysed by HPLC for internal standard recovery.
The internal standard recovery was 28%, 40%, 33%, 35%, 60% and
34% in the heart, kidney, liver, brain, retroperitoneal fat, and blad-
der, respectively. The % recovery values were later used for data
correction.

Final preparation of extracts involved evaporating the methano-
lic solution from the extracts, diluting the residue in acidified
water (5% formic acid), and extracting anthocyanins by solid-phase
adsorption onto a hydrophobic matrix (Sep-Pak C18, 0.35¢g,
Waters, Milford, MA). Anthocyanins were eluted with 5% formic
acid in 80% methanol, then evaporated to dryness. 400 p of 0.5%
FA aqueous solution was added to the sample, vortexed 10 min,
and centrifuged at 15,000xg for 20 min. The supernatant (100 pl)
was immediately subjected to LC/MS/MS analysis.

2.4. LC-MS/MS analysis

Samples (in triplicate) were injected into a Dionex UHPLC
UltiMate 3000 liquid chromatograph interfaced to an amaZon SL
ion trap mass spectrometer (Bruker Daltonics, Billerica, MA). A
C18 Kinetex column (2.6 micron particle size, 150 mm x 4.6 mm,
Phenomenex, CA, USA) or a similar phase Poroshell 120 EC18 col-
umn (2.7 micron particle size, 150 mm x 4.6 mm, Agilent, DE,
USA.) were used for chromatographic separation. The targeted ions
retention times were different for each columns, and the mass
spectrometry method was adjusted for MRM, accordingly. The ini-
tial mobile phase condition started from 90% A (0.1% formic acid in
water) and 10% B (0.1% formic acid in acetonitrile), then changed to
20% B in 5 min. After staying constant for 5 min at 20% B, the gra-
dient was changed linearly to 100% acetonitrile in 4 min and
remained there for 3 min. The total run was 18 min with 5 min ini-
tial condition equilibration time. The flow rate was maintained at
0.4 ml/min. The mass spectrometer electrospray capillary voltage
was maintained at 4.5 kV, and the drying temperature at 250 °C
with drying gas flow rate of 10 I/min. Nebulizer pressure was 40
psi. Nitrogen was used as both nebulising and drying gas, and
helium was used as collision gas at 60 psi. The mass-to-charge
ratio 757, 609 and 595 were selected as precursor ions in enhanced
resolution positive-ion MRM mode. Isolation width 4 and fragmen-
tation amplitude 1 were used to quantify the cyanidin-specific
fragment ion 287 from transition 757 — 287 and 595 — 287. The
fragment ion 301 was used to quantify the peonidin specific resi-
due from transition 609 — 301. The Smart Parameter Setting
(SPS) was used to automatically optimise the trap drive level for
precursor ions. The instrument was externally calibrated with
the ESI TuneMix (Agilent, DE, USA).

2.5. Statistical methods

Results statistics,

mean + SD.

are provided as descriptive namely,

3. Results

We previously reported that the major anthocyanin compound
in ‘Montmorency’ cultivar of tart cherry is cyanidin 3-glucosylruti-
noside, and that cyanidin species in ‘Montmorency’ cherries are
about 93% of total anthocyanins present (Kirakosyan et al., 2009).
In the current study, tart cherry IQF powder was analysed to deter-
mine the levels of individual anthocyanins: cyanidin 3-glucoside;
cyanidin 3-rutinoside; cyanidin 3-glucosylrutinoside; cyanidin
3-sophoroside; peonidin 3-glucoside; and pelargonidin. The results
in Table 1 show that the major anthocyanin compound in IQF tart
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Table 1
Individual anthocyanin constituents in ‘Montmorency’ tart cherry powder.

Anthocyanins ug/g dry % of individual
weight anthocyanins

Cyanidin 3-sophoroside 28+0.5 0.4

Cyanidin 3-glucosylrutinoside 325.9+57.2 42

Cyanidin 3-rutinoside 5-B-p-glucoside  120.2 £ 20.5 15.5

Cyanidin 3-glucoside 3.1+0.7 0.4

Cyanidin 3-rutinoside 274.2+43.2 354

Peonidin 3-glucoside 74+1.1 0.9

Peonidin 3-rutinoside 404 +7.7 52
Pelargonidin 1.2+04 0.1

cherry powder is cyanidin 3-glucosylrutinoside, followed by cyani-
din 3-rutinoside.

These results largely agree with our previous data with cherry
powder (Kirakosyan et al., 2009). However, we also detected and
identified two other anthocyanin compounds, namely, cyanidin
3-rutinoside 5-B-p-glucoside and peonidin 3-rutinoside (Figs. 1
and 2). Based on our quantification, the cherry powder contained
approximately 0.775 mg/g dry weight of total anthocyanins. This
value was used to calculate total anthocyanins consumed in the
daily diet (~0.155 mg/day for 1% cherry diet, 1.55 mg/day for 10%
cherry diet).
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Our main goal for the present work was to determine and
compare the bioavailability data for tart cherry anthocyanins in
targeted tissues of rats. Results in Table 2 show that four different
native (parent) anthocyanin species were detected and quantified
in several tissues.

Bladder and kidney contained more total anthocyanins than all
other tissues analysed. The highest concentration of cyanidin
3-glucosylrutinoside anthocyanin is 2339 picograms per gram tis-
sue in 10-TC rat bladder, which is almost ten times higher than
the mean amount in other tissues. The second highest concentra-
tion of individual anthocyanin (916 picograms/gram) was cyanidin
3-rutinoside 5-B-p-glucoside in the liver of 10-TC rats. In liver
tissue, three native anthocyanins except cyanidin 3-glucosylruti-
noside were detected. In heart tissues of both rat groups, all four
anthocyanins were detected and quantified. These four anthocya-
nins were present also in 1-TC bladder tissue. In brain tissue
samples, only cyanidin 3-rutinoside 5-B-p-glucoside and peonidin
3-rutinoside, were detected and quantified. No anthocyanins were
detected in retroperitoneal fat.

It is noteworthy that the bioavailability pattern of these four
anthocyanins among tissues is varied. For example, the occurrence
of cyanidin 3-rutinoside is high in organs of excretion/elimination
- the kidney and bladder. Cyanidin 3-glucosylrutinoside is high in
bladder, whereas cyanidin 3-rutinoside 5-B-p-glucoside and
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Fig. 1. (a) Extracted ion chromatograms (either in IQF powder or target tissue) of all eluted ions which have characteristic m/z 287, typical for the cyanidin moiety. (b)

Fragmentation of cyanidin 3-rutinoside 5-p-p-glucoside.
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Fig. 2. (a) Extracted ion chromatograms (either in IQF powder or target tissue) of all eluted ions which have characteristic m/z 301, typical for peonidin moiety. (b) Fragment
ions of m/z 609 (supposedly peonidin 3-rutinoside).

Table 2

Anthocyanin content (picograms per gram tissue) in tissues of rats fed with tart cherry-supplemented diets.
Tissue (cherry dose group) Cyanidin Cyanidin 3-glucosyl Cyanidin 3-rutinoside Peonidin Total anthocyanin

3-rutinoside rutinoside 5-B-p-glucoside 3-rutinoside content

Bladder
(1-TC group) 275.8+17.2 430.9 £27.2 171+11.8 4.7+0.5 882.4+56.8
(10-TC group) nd 2339+122.1 343.9+£19.2 8.7+0.7 2691.6 £ 142
Kidney
(1-TC group) 113.2£13.6 nd 7333323 58.4+43 904.9 +50.2
(10-TC group) 275+18.4 nd 483.7+£21.8 35+44 793.7 +44.6
Liver
(1-TC group) nd nd 313.1£17.9 204+1.2 333.5+19.1
(10-TC group) 146.4 £10.7 nd 916.9 +46.2 71.4+5.3 1134.7 £ 62.2
Heart
(1-TC group) 236.4+16.1 474+59 119+8.2 30.2+44 433 £34.6
(10-TC group) 99.5+84 782+53 180.5+11.8 9.4+09 367.6 +26.4
Brain
(1-TC group) nd nd 147.5+9.3 5104 152.6+9.7
(10-TC group) nd nd 317.5+15.6 203+1.8 337.8+17.4
Retroperitoneal fat
(1-TC group) nd nd nd nd -

(10-TC group) nd nd nd nd -
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peonidin 3-rutinoside were high in liver. Organs not involved in
metabolism and elimination (brain, heart, and retroperitoneal
fat) showed an expected reduction in tissue anthocyanin content.
Interestingly, these native anthocyanins were absent in abdominal
retroperitoneal fat, a proposed target of anthocyanin bioactivity
(Prior et al., 2010; Seymour et al., 2011; Tsuda, Horio, Uchida,
Aoki, & Osawa, 2003) although the presence of other metabolised
anthocyanins in this experiment cannot be excluded.

The dose-dependency of the tissue bioavailability revealed both
expected and unexpected results. Liver and brain had expectedly
higher levels of total anthocyanin (sum of the detected anthocya-
nins) in 10-TC versus 1-TC rats. In heart tissue, cyanidin 3-rutino-
side and peonidin 3-rutinoside were higher in 1-TC than 10-TC
rats, as were total anthocyanins. The same situation was observed
in kidney tissue; cyanidin 3-rutinoside 5-B-p-glucoside and peoni-
din 3-rutinoside were higher in 1-TC than 10-TC rats, as were total
anthocyanins.

4. Discussion

Bioavailability is defined in various ways. With oral intake of
nutrients, bioavailability generally refers to the quantity or fraction
of the ingested dose that is absorbed. Specifically, bioavailability is
the proportion of the nutrient that is digested, absorbed and
metabolised through normal pathways (McGhie & Walton, 2007).
Consequently, it is not only important to know how much of a
nutrient is present in a food or dietary supplement, but it is also
critical to know how much of that nutrient is bioavailable (Azzini
et al., 2010). The same principles apply to the non-nutrient phyto-
chemicals found in plant-based foods and beverages.

Anthocyanin tissue uptake may depend on their chemical struc-
ture, as influenced by the nature of the attached sugar moiety, and
also by the structure of the aglycone. As reported, anthocyanins
have low bioavailability; the majority of studies show a recovery
of <1% of the ingested anthocyanin dose (He & Giusti, 2010;
Manach, Williamson, Morand, Scalbert, & Remesy, 2005; McGhie
& Walton, 2007). Recent bioavailability studies have demonstrated
that anthocyanins are quickly absorbed from the stomach and in
the small intestine, appearing in the bloodstream within few min-
utes (about 5-20 min) after consumption, and reaching maximum
blood levels after half to two hours (Azzini et al., 2010; McGhie &
Walton, 2007; Pojer, Mattivi, Johnson, & Stockley, 2013; Vanzo,
Vrhovsek, Tramer, Mattivi, & Passamonti, 2011; Vanzo et al.,
2013). Anthocyanins are exposed to different pH environments
during digestion which affects the stability of many anthocyanin
species. Anthocyanins are also subjected to degradation and
metabolism by intestinal enzymes such as the glycosidases, ester-
ases, oxidases, and hydrolases (Sousa et al., 2008). They appear in
plasma and urine in their parental form or as methylated, glucu-
ronidated or sulphated compounds (McGhie & Walton, 2007).
Some ingested anthocyanins are absorbed intact and circulated
in the plasma and passed into urine without undergoing metabolic
changes (Pojer et al., 2013; and references cited therein).

We previously studied the pharmacokinetics of whole tart
cherry in humans (Uhley et al., 2009). Some anthocyanin metabo-
lites may be present in plasma even after fasting the rats for 18 h.
However, our clinical study showed that plasma cyanidin 3-glucos-
ylrutinoside and cyanidin 3-rutinoside returned to baseline 12 h
after whole tart cherry intake (Uhley et al., 2009). As such, any
residual blood in tissue is unlikely to contribute to our results
because of fasting, exsanguination, tissue sectioning/mincing,
washing, and extraction procedures.

The diverse distribution of tart cherry anthocyanins in different
tissues requires some explanation as well. The parent phytochemi-
cals contain functional groups (e.g., a hydroxyl group) that often

undergo conjugation reactions with endogenous compounds to
yield more polar and water-soluble compounds. The latter are usu-
ally ideal substrates for active transport out of the cell and eventual
excretion from the body. The sugar conjugates of anthocyanins
may also have an effect on the bioavailability of bioactive phyto-
chemicals. In our experiments, we observed exclusively anthocya-
nins, whereas none of the known anthocyanidins were detected. It
is noteworthy that the brain contains no cyanidin 3-rutinoside, but
peonidin 3-rutinoside is present. In addition, the more polar and
more complex congener of cyanidin 3-rutinoside, namely, cyanidin
3-rutinoside 5-glucoside was detected. Also, the most abundant
compound, cyanidin 3-glucosyl rutinoside, was absent in excretory
organs (liver, kidney), but was found in the bladder and in the
heart. One can interpret these data as a mechanism for elimination
due to glomerular filtration (without renal excretion) and adsorp-
tion of a largely glycosylated compound on the surface of the
bladder epithelium and on the cardiac vessels.

Finally, some of the proposed transporters for anthocyanins
may have diverse structural preferences or affinities, and these
transporters may vary by tissue type (Schinkel & Jonker, 2003;
Vanzo et al., 2008).

Several studies have investigated anthocyanin uptake in the
liver. A study with bilberry anthocyanins in mice estimated that
~50% of tissue anthocyanins following intake were located in the
liver (Sakakibara et al., 2009). These observations suggest that
the liver may be the main target for anthocyanin accumulation.
In our study, we observed only high levels of cyanidin 3-rutinoside
5-B-p-glucoside anthocyanin in liver tissue, particularly at the
10-TC dose.

The kidneys are also a target for accumulation of anthocyanins.
For example, grape anthocyanins appear in the kidneys of rats
10 min after gastric administration, where the total concentration
was almost two times higher than in the systemic circulation
(Vanzo et al., 2008). Anthocyanin-rich diets have conferred protec-
tion to kidneys from experimental hypertension (Elks et al., 2011)
and diabetes (Kang, Lim, Lee, Yeo, & Kang, 2013). In kidneys, antho-
cyanins may undergo active metabolism depending on the level of
native anthocyanins. This may explain the discrepancy of native
anthocyanin concentration in kidney, where native anthocyanin
concentration in 1-TC rats appears higher than in 10-TC rat kidney.

Another important site of anthocyanin distribution and avail-
ability is brain tissue (Andres-Lacueva et al., 2005; Rendeiro,
Guerreiro, Williams, & Spencer, 2012). Recently, we showed that
intake of 1% tart cherry diet (same powder as employed here) sig-
nificantly reduced stroke-related phenotypes in rats. Tart cherry
intake also reduced brain NFkB activity and related pro-inflamma-
tory transcripts (Seymour et al., 2013). The current results confirm
that tart cherry anthocyanins cross the blood-brain barrier. Studies
with whole blueberry show brain bioavailability of blueberry
anthocyanins and neuroprotection from normal ageing (Andres-
Lacueva et al., 2005), Parkinson’s disease (Strathearn et al., 2014),
and toxic insult (Poulose, Bielinski, Carrihill-Knoll, Rabin, &
Shukitt-Hale, 2014).

The detection of native anthocyanins in brain, heart, and other
tissues may also correlate with the effects of anthocyanin-rich
diets on transcription factors and genes/proteins related to antiox-
idant and anti-inflammatory defence, as observed in other studies
using tart cherry, grape, blueberry and bilberries (Mauray et al.,
2012; Mykkdnen et al, 2012; Seymour et al., 2009; Seymour
et al,, 2011; Seymour et al., 2013).

While the current work focuses on anthocyanin tissue bioavail-
ability, results may be impacted by the complex polypharmacy of
bioavailable tart cherry phytochemicals and their varied sugar
moieties that affect absorption, distribution, metabolism, and
excretion. The mechanisms of anthocyanin cellular transport are
postulated to include bilitranslocase and the ATP-binding cassette
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(ABC) family (Schinkel & Jonker, 2003; Vanzo et al., 2008). Since it
is not clear from the current preliminary study how variation in
anthocyanin accumulation among tissues is affected by the varied
tissue expression of these transporters, this topic deserves further
study. Finally, the extent to which some bioavailable metabolites
may contribute to beneficial health effects of anthocyanins is
largely unknown and needs further investigation.
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